
5 Infinite Groups

Note: an injection 𝑓 is a function taking 𝐴 into 𝐵 such that for all 𝑎 ∈ 𝐴, 𝑓 (𝑎) ∈ 𝐵 and 𝑓 (𝑎) is unique. In
other words, there are no two 𝑎1, 𝑎2 ∈ 𝐴, 𝑎1 ≠ 𝑎2 such that 𝑓 (𝑎1) = 𝑓 (𝑎2).

1. Where have you come across the roots iso- and -morphic before?

(Answers may vary.)
Iso- is a root meaning equal. You might have seen it in isometry, isometric (paper), isomer, isosceles,

isotonic, isotropy, and isotope. Morph means “form” or “shape.” You might have seen it in metamorphosis,
amorphous, anthropomorphism, or morpheme.

2. Can two groups be isomorphic if they have different orders?

No. Suppose we have groups 𝐴 and 𝐵 such that |𝐴| > |𝐵| (𝐴 is bigger than 𝐵). Then we can’t have a
one-to-one correspondence between the elements of 𝐴 and 𝐵, because there will always be elements in 𝐴
without a “partner” in 𝐵. Thus, they cannot be isomorphic.

3. The rotation group of the regular hexagon, also known as the cyclic group of order 6, 𝐶6, has six
elements: the identity, and rotations of 𝜋

3 , 2𝜋
3 , 𝜋, 4𝜋

3 , 5𝜋
3 radians. A rotation of 𝜋

3 generates the
group.

(a) Which other rotation can generate the group?

The other rotation which generates the group is 5𝜋
3 , because 5 is coprime with 6. This is necessary because

otherwise a subgroup of the full 𝐶6 is formed. For example, 2𝜋
3 generates

{
0, 2𝜋

3
, 4𝜋
3

}
,

which is merely 𝐶3. Lame!

(b) What is the period of each element?

0 or 𝐼 ∶ 1
𝜋
3
∶ 6

2𝜋
3

∶ 3

𝜋 ∶ 2
4𝜋
3

∶ 3

5𝜋
3

∶ 6

4. 𝐶6 has the same number of elements as the dihedral group 𝐷3.

(a) Are the two groups isomorphic? How do you know?

No, the two groups are not isomorphic, although they are the same size. An easy way to see this is that 𝐷3
has three reflections, which have period 2, but 𝐻 only has one element of period 2.

(b) What is the period of each element of 𝐷3?

𝐼 ∶ 1
𝑟 ∶ 3
𝑟2 ∶ 3
𝑓 ∶ 2
𝑓𝑟 ∶ 2
𝑓𝑟2 ∶ 2
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(c) What can you say if the sets of the periods of the elements of each group are not the same?

If the periods of each group can’t be paired up, then the elements cannot be paired up either; after all,
isomorphism is a structure-preserving operation. Thus, the two groups are not isomorphic.

(d) Which subgroups of the cyclic group 𝐶6 and 𝐷3 are isomorphic?

One is 𝐶2, which is {0, 𝜋} in 𝐶6 and {𝐼, any reflection} in 𝐷3. The other nontrivial one is 𝐶3, which is{
0, 2𝜋3 , 4𝜋3

}
in 𝐶6 and {𝐼, any rotation} in 𝐷3. Both also have the trivial subgroup {𝐼} of just the identity

element.

5. Could an infinite group and a finite group be isomorphic?

No, because their sizes are not the same; a one-to-one correspondence cannot be constructed.

6. Do you think all infinite groups are isomorphic to each other? Find a counterexample if you can.

Not all infinite groups are isomorphic. For example, the set of rotations about the origin has only one element
of period 2, namely 𝑟180◦ . But the set of reflections about the origin has infinitely many elements of period 2.
Both, however, are infinite in size.

7. Make guesses to the relative sizes of the following pairs of sets. You may use shorthand like
|𝑎| < |𝑏|, |𝑎| > |𝑏|, |𝑎| = |𝑏|. After you have made your guesses, we will analyze some of the
cases and you can find out how good your intuition was.

(Answers may vary, but the “correct” answers are shown.)

(a) natural numbers, ℕ vs. positive even numbers, 2ℕ

|ℕ| = |2ℕ|

(b) natural numbers, ℕ vs. positive rational numbers, ℚ+

|ℕ| = ||ℚ+||
(c) natural numbers, ℕ vs. real numbers between zero and one, [0, 1)

|ℕ| < |[0, 1)|

(d) real numbers, ℝ vs. complex numbers, ℂ

|ℝ| = |ℂ|

(e) real numbers, ℝ vs. points on a line

|ℝ| = |points on a line|

(f) points on a line vs. points on a line segment

|points on a line| = |points on a line segment|

(g) points on a line vs. points on a plane

|points on a line| = |points on a plane|

(h) rational numbers, ℚ vs. Cantor set (look this up or ask your teacher)

|𝑄| < ||
8. Now, please return to Problem 7 and revise your answers. Justify each answer by producing

a one-to-one correspondence, or showing the impossibility of doing so. Part (h) is an optional
challenge.
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(a) natural numbers, ℕ vs. positive even numbers, 2ℕ

This one is pretty straightforward. We have the following injection from ℕ to 2ℕ:

𝑠 ∈ ℕ → 2𝑠 ∈ 2ℕ.

We have the following injection from 2ℕ to ℕ:

𝑠 ∈ ℕ →
𝑠
2
∈ ℕ.

Since we can go both ways, we have |ℕ| = |2ℕ|, even though ℕ ⊂ 2ℕ (ℕ is a subset of 2ℕ).7

(b) natural numbers, ℕ vs. positive rational numbers, ℚ+

Surprisingly, we can make a one-to-one correspondence. If we list out the positive rationals in reduced form
( 𝑝𝑞 with 𝑝, 𝑞 coprime), ordered by increasing denominator, we can create the correspondence:

ℚ+ 0
1

1
1

1
2

2
1

1
3

3
1

1
4

2
3

3
2

4
1

⋯

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ⋯

ℕ 1 2 3 4 5 6 7 8 9 10 ⋯

More details of this construction are given later in the textbook chapter. In any case, ||ℚ+|| = |ℕ|.
(c) natural numbers, ℕ vs. real numbers between zero and one, [0, 1)

A one-to-one correspondence cannot exist between these two sets, so |ℕ| < |[0, 1)|. The classic proof of this
is Cantor’s diagonal argument, which is given in the textbook.

(d) real numbers, ℝ vs. complex numbers, ℂ

This is a pretty tough problem to do in a logically sound way. The key is to represent complex numbers 𝑎 + 𝑏𝑖
as the ordered pair (𝑎, 𝑏) where 𝑎, 𝑏 ∈ ℝ. The set of all (𝑎, 𝑏) is denoted ℝ2.

Here is the route we will take:

1. Construct a one-to-one correspondence between the interval [0, 1) and ℝ.

2. Use (1) to construct a similar correspondence between [0, 1)2 and ℝ2. That is, we will construct a
correspondence between ordered pairs of reals in [0, 1) and ordered pairs of any reals.

3. We find an injection from [0, 1) into [0, 1)2.

4. We find an injection from [0, 1)2 into [0, 1). This shows there is a one-to-one correspondence between
[0, 1) and [0, 1)2.

5. We “chain” the correspondences together:

ℝ ↔ [0, 1) ↔ [0, 1)2 ↔ ℝ2.

Step 1: The most straight forward way to do this is to show there is an injection from [0, 1) into ℝ, and vice
versa.8 We have 𝑓 (𝑥) = 𝑥 as a straightforward injection from [0, 1) into ℝ, and the logistic function

𝑔(𝑥) = 1
1 + 𝑒−𝑥

as an injection 𝑔 ∶ ℝ → [0, 1). (In fact, the range of the logistic function is only (0, 1).) Thus, there exists a
one-to-one correspondence 𝐻 between ℝ and [0, 1).

Step 2: If 𝐻 is the function from Step 1, we have

𝐽 (𝑎, 𝑏) = (𝐻(𝑎),𝐻(𝑏))

7We didn’t explicitly state it because it’s pretty intuitive, but this is using the Cantor-Schröder-Bernstein theorem (CSB).
8Again, this uses the Cantor-Schröder-Bernstein theorem.

34



as a one-to-one correspondence between ℝ2 and [0, 1)2.
Step 3: An injection from [0, 1) into [0, 1)2 is straightforward:

𝑘1(𝑥) = (𝑥, 0).

Step 4: An injection from [0, 1)2 into [0, 1) is more challenging. One idea is to interleave digits like so:

(0.123456789..., 0.314159265)
𝑘2
→ 0.132134415569728695...

The main issue with this construction is that the two representations of 0.5 = 0.4999... give two different
outputs, so this mapping isn’t even a proper function:

(0.5, 0.0) → 0.50

(0.499..., 0.0) → 0.409090... ≠ 0.50.

The easiest thing to do here is arbitrarily choose one of these mappings. In particular, we represent a number
with an infinite sequence of trailing zeroes 0.𝑎1𝑎2⋯ 𝑎𝑛00000... with the numerically equivalent

0.𝑎1𝑎2⋯ (𝑎𝑛 − 1)9999....

Now, our function 𝑘2 is a true injection, since 𝑘(𝑎, 𝑏) ∈ [0, 1) for all (𝑎, 𝑏) ∈ [0, 1)2 and 𝑘(𝑎1, 𝑏1) ≠ 𝑘(𝑎2, 𝑏2) for
(𝑎1, 𝑏1) ≠ (𝑎2, 𝑏2).

Step 5: We have constructed an injection 𝑘1 from [0, 1) → [0, 1)2 and an injection 𝑘2 from [0, 1)2 → [0, 1).
Thus, there exists a one-to-one correspondence 𝐾 between [0, 1) and [0, 1)2.

We chain the correspondences, finally proving that there exists a one-to-one correspondence between ℝ
and ℝ2:

ℝ
𝐻
↔[0, 1)

𝐾
↔[0, 1)2

𝐽
↔ℝ2.

Thus, |ℝ| = |||ℝ2|||. Fascinating! The philosophical interpretation of this mathematical statement is up for
debate.

(e) real numbers, ℝ vs. points on a line

This problem is pretty straightforward if you think of points on a line as points on a number line. We arbitrarily
choose a point on the line for 0 and a point for 1. In this regime, each point on the line corresponds with a
unique real number. Thus, |ℝ| = |points on a line|.

(f) points on a line vs. points on a line segment

The simplest way to do this is, once again, to show there is an injection in each direction. We can go from
segment to line by observing that a segment is just a subset of a line. We can go from line to segment by
representing each point as a real number ℝ as we already did, then taking the logistic function

𝑓 (𝑥) = 1
1 + 𝑒−𝑥

which turns that point into a real number in the interval (0, 1). This can be mapped onto the line segment by
simply choosing one endpoint to be 0 and the other to be 1.

|points on a line segment| = |points on a line|
(g) points on a line vs. points on a plane

We can represent points on a line, as usual, with ℝ. We can represent points on a plane by arbitrarily choosing
non-collinear points for (0, 0), (1, 0) and (0, 1) and letting this be a coordinate space where points (𝑎, 𝑏) are
expressed as

𝑎 < 1, 0 > +𝑏 < 0, 1 > .

Note that the two vectors don’t have to be perpendicular. This shows that we can represent points on a plane
by ℝ2. But we’ve already proved |||ℝ2||| = |ℝ|! Thus,

|points on a plane| = |points on a line| .
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(h) rational numbers, ℚ vs. Cantor set (look this up or ask your teacher)

The Cantor set  is formed by iteratively deleting the open middle third of segments, starting with the unit

segment. We start with the interval [0, 1], then split it into two intervals:
[
0, 13

]
and

[
2
3 , 1

]
. This set, let’s call

it 1, has total length 2
3 . We split up each of 1’s intervals again, forming 2 =

[
0, 19

]
∪
[
2
9 ,

1
3

]
∪
[
2
3 ,

7
9

] [
8
9 , 1

]
.

Note what happened here: the first interval in 1 had its middle third deleted, splitting it into our first two
intervals; and the same with the second interval. 2 has total length 4

9 . We repeat this process to infinity, so

that (informally speaking) ∞ = , the Cantor set. The set has total length 0, but it’s not empty! 0, 1
3 , and 7

9
are all members of , for example.
For a visual, the construction is shown in Figure 1.

0 1
1
3

2
3

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

⋮
↓

𝐿 𝑅

𝐿′ 𝑅′

Figure 1: The construction of the Cantor set .

How do we attack this problem? It’s not immediately clear how to tell whether a number 𝑥 is in . It’s not

something as simple as 𝑝
3𝑛 for some integers 𝑝, 𝑛, because 4

9 is in the deleted interval
[
1
3 ,

2
3

]
, and is not in

. We should represent the set as something we know how to deal with, keeping in mind that answering our
question of cardinality only involves making a one-to-one correspondence, not a complete description of the
set.

Consider how we would choose a random point in . Starting at 𝐶1, we can either go to the left segment

or the right segment (marked as 𝐿 and 𝑅 in Figure 1). If we choose 𝐿, which is
[
0, 13

]
, then we once again

have 2 choices: to go to 𝐿′, which is
[
0, 19

]
, or 𝑅′, which is

[
2
9 ,

1
3

]
. This continues forever, and every element

of  can be uniquely obtained this way. Thus, we can correspond each element 𝑥 ∈  with a binary number
in the interval [0, 1].

As an example, suppose we choose segments in the sequence 𝐿𝑅𝑅𝐿𝐿𝐿𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿... with infinite
trailing 𝐿’s. Then the corresponding binary number is

0.011000102 =
39
128

∈ [0, 1].

Thus, we have a one-to-one correspondence between the elements of  and [0, 1].9 The question is asking
the relative sizes of ℚ and . We already know (by Cantor’s diagonal argument or otherwise) that |ℚ| <
|[0, 1]|. Therefore, we have

|ℚ| < |[0, 1]| = || ⟹ |ℚ| < ||.
This might be counterintuitive, that a set with "length" 0 is still bigger than all the rational numbers on the great
big number line. Frankly, without some formal language (particularly from topology), it’s hard to describe this
set with any rigor. The Wikipedia article on the Cantor set may guide you further!

9. Here’s a list of infinite sets, each with an operation. For each pair, answer: (i) Does it form a
group? (ii) Which previous group(s) is it isomorphic to?

(a) natural numbers, addition
9Note it is inclusive because 0.12 = 1 and 0.02 = 0.
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i. Does it form a group?

Nope! It cannot satisfy the identity, since for 𝑥 + 𝐼 = 𝐼 + 𝑥 = 𝐼 to be true for all 𝑥 we need 𝐼 = 0. If you’re a
fan of the standard ISO 80000, and include 0 ∈ ℕ, then it still doesn’t form a group, since it can’t satisfy the
invertibility property. For example, the inverse of 1 should be −1 so that 1 + (−1) = 0, but −1 ∉ ℕ.

ii. Which previous group(s) is it isomorphic to?

Not a group, oof.

(b) integers, addition

i. Does it form a group?

It does form a group. The identity element is 0, and it satisfies all necessary properties:
Identity: 𝑥 + 0 = 0 + 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℤ, then 𝑥 + 𝑦 ∈ ℤ.
Associativity: We have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℤ.
Inverse: The inverse of 𝑥 is −𝑥, since 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0.

ii. Which previous group(s) is it isomorphic to?

None, I wonder why.

(c) even integers, addition

i. Does it form a group?

It does form a group. The identity element is 0, and it satisfies all necessary properties:
Identity: 𝑥 + 0 = 0 + 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ 2ℤ, then 𝑥 + 𝑦 = 2𝑠 + 2𝑡 = 2(𝑠 + 𝑡) ∈ 2ℤ.
Associativity: We have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 2ℤ.
Inverse: The inverse of 𝑥 is −𝑥, since 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0.

ii. Which previous group(s) is it isomorphic to?

It is isomorphic to integers under addition, because we can simply correspond 2𝑛 ∈ 2ℤ with 𝑛 ∈ ℤ. All the
group structure is preserved, since 2𝑚 + 2𝑛 ∈ 2ℤ corresponds with 𝑚 + 𝑛 ∈ ℤ.

(d) odd integers, addition

i. Does it form a group?

This does not form a group, since it cannot satisfy the identity property. There is no odd integer 𝐼 such that
𝑥 + 𝐼 = 𝐼 + 𝑥 = 𝑥.

ii. Which previous group(s) is it isomorphic to?

Not a group, oof.

(e) rational numbers, addition

i. Does it form a group?

Yes, this forms a group with identity element 0. It satisfies all necessary properties:
Identity: 𝑝

𝑞 + 0 = 0 + 𝑝
𝑞 = 𝑝

𝑞 .

Closure: If 𝑝1
𝑞1
, 𝑝2𝑞2

∈ ℚ, then

𝑝1
𝑞1

+
𝑝2
𝑞2

=
𝑝1𝑞2 + 𝑝2𝑞1

𝑞1𝑞2
∈ ℚ.

Associativity: We have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 2ℤ.
Inverse: The inverse of 𝑝

𝑞 is − 𝑝
𝑞 , since

𝑝
𝑞
+
(
−𝑝
𝑞

)
=
(
−𝑝
𝑞

)
+ 𝑝

𝑞
= 0.
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ii. Which previous group(s) is it isomorphic to?

None. It’s not isomorphic to integers under addition because for each element 𝑥 ∈ ℚ, there exists an element
𝑦 = 𝑥

2 ∈ ℚ such that

𝑦 + 𝑦 = 𝑥.

This is impossible for any odd integers (analogously, for the group of even integers under addition, impossible
for any elements not divisible by 4).

(f) real numbers, addition

i. Does it form a group?

Yes, this forms a group with identity element 0. It satisfies all necessary properties:
Identity: 𝑥 + 0 = 0 + 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℝ, then 𝑥 + 𝑦 ∈ ℝ.
Associativity: We have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℝ.
Inverse: The inverse of 𝑥 is −𝑥, since 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0.

ii. Which previous group(s) is it isomorphic to?

None. After all, ℝ is uncountable, while the groups we’ve seen so far are countable.

(g) complex numbers, addition

i. Does it form a group?

Yes, this forms a group with identity element 0 = 0 + 0𝑖. It satisfies all necessary properties:
Identity: 𝑥 + 0 = 0 + 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℂ, then 𝑥 + 𝑦 ∈ ℂ.
Associativity: We have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℂ.
Inverse: The inverse of 𝑥 is −𝑥, since 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0.

ii. Which previous group(s) is it isomorphic to?

Since ℂ is uncountable, ℝ under addition is the only candidate. Assuming the axiom of choice,10 they are
actually isomorphic.

Proving they are isomorphic is tough11 without the introduction of vector spaces and related gadgets
(specifically, Hamel bases). If you’re really curious, check out https://math.stackexchange.com/a/1511685/677124
for a mildly accessible view of the subject... if you already understand the basics of infinite-dimensional vector
spaces. In summary, both ℝ and ℝ2 are vector spaces over the rational numbers ℚ, and since |ℝ| = |ℝ2|
they are isomorphic as vector spaces. This also implies that they are isomorphic as additive groups, although
such an isomorphism can’t really be written down.

(h) integers, multiplication

i. Does it form a group?

No, they do not form a group. The identity element would be 1, so that 1 ⋅ 𝑥 = 𝑥 ⋅ 1 = 𝑥, but 1 ⋅ 0 = 0 ≠ 1, so it
cannot satisfy invertibility. Even if we removed 0, for any 𝑝 ≠ ±1 there is no integer 𝑞 such that 𝑝𝑞 = 1.

ii. Which previous group(s) is it isomorphic to?

Not a group, oof.

(i) integer powers of 2, multiplication

i. Does it form a group?

10The axiom of choice states that for every indexed family of sets (𝑆𝑖)𝑖∈𝐼 , where 𝑆𝑖 ≠ ∅, there exists an indexed family of elements
(𝑥𝑖)𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑆𝑖 for all 𝑖 ∈ 𝐼 . Intuitively, this means that given a list of non-empty sets, you can select exactly one item from each
set.

11In fact, it is impossible to construct an “explicit” isomorphism because ℝ ≇ ℂ is consistent with the axiom of choice.
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Yes! Let the group be called  = {2𝑥 ∶ 𝑥 ∈ ℤ} for fun. The identity element is 20 = 1. The group properties
are satisfied:

Identity: 2𝑥 ⋅ 1 = 1 ⋅ 2𝑥 = 2𝑥.
Closure: 2𝑥 ⋅ 2𝑦 = 2𝑥+𝑦 ∈  .
Associativity: We have 2𝑥(2𝑦 ⋅ 2𝑧) = (2𝑥 ⋅ 2𝑦)2𝑧 = 2𝑥+𝑦+𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℤ.
Inverse: The inverse of 2𝑥 is 2−𝑥, since 2𝑥2−𝑥 = 2−𝑥2𝑥 = 20 = 1.

ii. Which previous group(s) is it isomorphic to?

It is isomorphic to the integers under addition. 2𝑛 ∈  corresponds with 𝑛 ∈ ℤ, since we have

2𝑚 ⋅ 2𝑛 = 2𝑚+𝑛 ↔ 𝑚 + 𝑛.

(j) rational numbers, multiplication

i. Does it form a group?

The rational numbers under multiplication do not form a group; the identity element must be 1, but then 0
would not have an inverse since nothing times 0 is 1.

ii. Which previous group(s) is it isomorphic to?

Not a group, oof.

(k) rational numbers excluding 0, multiplication

i. Does it form a group?

Yes! The rational numbers excluding 0, written ℚ ⧵ 0, form a group under multiplication with identity element
1. The group properties are satisfied:

Identity: 𝑥 ⋅ 1 = 1 ⋅ 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℚ ⧵ 0, then 𝑥 ⋅ 𝑦 ∈ ℚ ⧵ 0; the product of two nonzero rational numbers is rational and

nonzero.
Associativity: We have 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℚ ⧵ 0.

Inverse: The inverse of 𝑥 ∈ ℚ ⧵ 0 is 1
𝑥 , since 𝑥

(
1
𝑥

)
=
(
1
𝑥

)
𝑥 = 1 and 𝑥 ≠ 0.

ii. Which previous group(s) is it isomorphic to?

It is not isomorphic to any. Let this group be . The only candidates are other groups with countably infinite
order, aka addition of rational numbers () and addition of integers ( ).  can’t be isomorphic to , because
all elements of  have a “half,” while the elements of  don’t all have an analogous square root. To be more
explicit, all elements 𝑘′ = 𝑝

𝑞 in  have a corresponding element 𝑗′ such that 𝑗′ + 𝑗′ = 𝑘′. But not all elements
𝑘 in  have a corresponding element 𝑗 such that 𝑗 ⋅ 𝑗 = 𝑘, since, for example, no element 𝑞 of  satisfies
𝑞 ⋅ 𝑞 = − 1

2 .
Thinking about 𝑗′ + 𝑗′ = 𝑘′ and 𝑗 ⋅ 𝑗 = 𝑘 also helps us prove that  can’t be isomorphic to  . Take the

element 𝑘 = 4 in , for example. Then 𝑗 = 2 and 𝑗 = −2 both square to 𝑘. In contrast, no element 𝑘′ of 
has the property that there are two different values of 𝑗′ which satisfy 𝑗′ + 𝑗′ = 𝑘′, since either is no solution
or the unique solution 𝑗′ = 𝑘′∕2.

(l) real numbers excluding 0, multiplication

i. Does it form a group?

Yes! The real numbers excluding 0, written ℝ ⧵ 0, form a group under multiplication with identity element 1.
The group properties are satisfied:

Identity: 𝑥 ⋅ 1 = 1 ⋅ 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℝ ⧵ 0, then 𝑥 + 𝑦 ∈ ℝ ⧵ 0; the product of two nonzero rational numbers is rational and

nonzero.
Associativity: We have 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℝ ⧵ 0.

Inverse: The inverse of 𝑥 ∈ ℝ ⧵ 0 is 1
𝑥 , since 𝑥

(
1
𝑥

)
=
(
1
𝑥

)
𝑥 = 1 and 𝑥 ≠ 0.
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ii. Which previous group(s) is it isomorphic to?

It is not isomorphic to any of the previous groups. The only candidate would be the real numbers under
addition, but note that this group contains −1, which has period 2, while the real numbers under addition have
no elements with period 2.

(m) complex numbers, multiplication

i. Does it form a group?

No, because 0 prevents the group from satisfying invertibility.

ii. Which previous group(s) is it isomorphic to?

Not a group, oof.

(n) rotation by a rational number of degrees

i. Does it form a group?

Yes! The identity is 0 and the group can be thought of as adding rationals modulo 360. The group axioms are
satisfied:

Identity: 𝑥 + 0 = 0 + 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℚ then 𝑥 + 𝑦 ∈ ℚ.
Associativity: We have 𝑥 + 𝑦 + 𝑧 = 𝑥 + 𝑦 + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℚ.
Inverse: The inverse of 𝑥 is −𝑥, since 𝑥 + (−𝑥) = 0.

ii. Which previous group(s) is it isomorphic to?

None. The easiest way to see this is that the element 360
𝑛

◦
, where 𝑛 is an integer, has period 𝑛, so we can

construct elements of arbitrary periods. No previous groups have elements of arbitrary periods.

(o) rotation by a rational number of radians

i. Does it form a group?

Yes! The identity element is 0 and it is totally equivalent to the rational numbers under addition. That’s because
for any rational radian rotations 𝑟𝑝1∕𝑞1 and 𝑟𝑝2∕𝑞2 , where 𝑝1, 𝑞1, 𝑝2, 𝑞2 ∈ ℤ, 𝑞1, 𝑞2 ≠ 0 and 𝑝1∕𝑞1 ≠ 𝑝2∕𝑞2, we
have 𝑟𝑝1∕𝑞1 ≅ 𝑟𝑝2∕𝑞2 . The easiest way to understand this is that for two such rotations to be equal, there must
be some integer 𝑘 such that

𝑝1
𝑞1

=
𝑝2
𝑞2

+ 2𝜋𝑘.

There are two cases to consider: 𝑘 = 0 and 𝑘 ≠ 0. If 𝑘 = 0, then 𝑝1
𝑞1

= 𝑝2
𝑞2

, which violates our assumption. If
𝑘 ≠ 0, then since 𝜋 is irrational, the RHS is irrational while the LHS is rational. Since an irrational and rational
cannot be equal, such an integer 𝑘 cannot exist and 𝑟𝑝1∕𝑞1 ≇ 𝑟𝑝2∕𝑞2 .

The group properties are straightforward and identical to the rationals under addition.

ii. Which previous group(s) is it isomorphic to?

As explained, it is isomorphic to the rational numbers under addition.

(p) rotation by an integer number of radians

i. Does it form a group?

Yes. The identity element is 0 and it is equivalent to the integers under addition. We proceed in a similar
method to the previous problem: consider two integer radian rotations 𝑟𝑎 and 𝑟𝑏 where 𝑎, 𝑏 ∈ ℤ and 𝑎 ≠ 𝑏.

Suppose 𝑟𝑎 ≅ 𝑟𝑏. Then there is some integer 𝑘 such that

𝑎 = 𝑏 + 2𝜋𝑘.
If 𝑘 = 0, then 𝑎 = 𝑏, contradicting our assumption that 𝑎 ≠ 𝑏. If 𝑘 ≠ 0, then the RHS is irrational while the LHS
is rational. This is impossible to satisfy, so 𝑘 does not exist and 𝑟𝑎 ≇ 𝑟𝑏.

The group properties are straightforward and identical to the integers under addition.

40



ii. Which previous group(s) is it isomorphic to?

As explained, it is isomorphic to the integers under addition.

10. Can an irrational number taken to an irrational power ever be rational? Consider the potential

example 𝑎 =
√
2
√
2
. To help you answer this question, let 𝑏 = 𝑎

√
2. Simplify 𝑏, and explain why

we don’t need to know whether 𝑎 is rational or irrational.

We have

𝑏 = 𝑎
√
2 =

(√
2
√
2
)√

2

=
√
2
√
2⋅
√
2
=
√
2
2
= 2.

Let’s write out the facts we know.

1. We know that
√
2 is irrational.

2. By (1), we know that 𝑎 is the result of an irrational number to an irrational power.

3. We know that 2 is the result of 𝑎 to an irrational power.

Suppose 𝑎 is rational. Then 𝑎 =
√
2
√
2

is our desired example, by (2)! So, suppose 𝑎 is irrational. Then by

(3), 2 is the result of an irrational number (namely, 𝑎) to an irrational power (namely,
√
2). So then 2 = 𝑎

√
2 is

our desired example! 𝑎 has to be irrational or rational; it can’t be something else. But in either case, we can
produce a number which satisfies the requirements. Thus, we can answer in the affirmative, but we can’t give
an explicit example!12

12It turns out that 𝑎 is the irrational one by the Gelfond-Schneider theorem. This theorem was only proved in 1934; yet, we are able to
derive related results with simpler logic.
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